
Flightplan Visualizer (FV) Filter manual
© Copyright 2018-2020 All rights reserved by Pelle F. S. Liljendal

In versions 1.14 of FV I implemented a filter combo-box on the main form which allows
you to filter which flightplans are listed in the flightplan combo-box below. A tool-tip
appears when you hoover the mouse over the filter combo-box and lists some examples of
filters. Then in version 1.15 I added filters in the leg-search form, above the flightplan-,
airline- and aircraft- list-views. Each of these still have a tool-tip showing many of the
types on which you can filter, however many of the new filters added in version 1.15 can
be setup to be very complex. For this reason I decided to make a small/separate manual
explaining how these filters can be set up. This manual can be launched both from the
Help menu (in the main form) and directly from the leg-search form.

Specific filters
In the first pages this manual will tell you about the generic usage of filters, that apply to
all filters. Then the filters for each specific type (flightplan, airline, aircraft and airport) are
described (they all share the same generic way of functioning, but have different element-
types). If you want to look up a specific filters, then skip ahead to the sections listed
below:

• Flightplan filter ← Use link to go directly to section

• Airline filter ← Use link to go directly to section

• Aircraft filter ← Use link to go directly to section

• Airport filter ← Use link to go directly to section

Filter validation
As you enter the filter-text it is constantly being validated. If the program detects an error
in the filter-text it will change the text-color to red to indicate an error have been
detected. As long as the filter-text is red the filter is inactive (the last correctly entered
filter remains in use). When the text turns black it is not an indication that the filter is a
“good filter”. You can still have entered something that does not make sense. E.g. show
all aircraft with more that 10 engines, or only show airlines that at the same time both are
registered in USA and CHN (China) - as an airline can only be associated with a single
country.

Keep it simple (stupid)
Even though the filters can be used to enter very complex filter-text, in its most basic form
you can simply enter a short text/name and show all items containing this text in its
name. E.g. in the flightplan filter you can enter west to only include flightplans with west
in the name. Likewise you can enter 737 into an aircraft-filter to only show aircraft with
737 in their names (e.g. Boeing 737). The filter is case insensitive so you are free to use
upper-/lower-case characters as you please. Once filtered you can select/deselect items
and then enter another filter-text and again select/deselect as you pleases (rinse and
repeat).

Wildcards
Most of the filter elements allows you to enter (DOS-like) wildcards. A wildcard is “place-
holder” for none-, one- or multiple- characters. The asterisk (*) is the most commonly
used wildcard character and it is at the same time a placeholder for none-, one- or
multiple- characters. E.g. entering the flightplan filter text ca*da will include all flightplans

with canada in their name, as the asterisk in this case is a placeholder for na. Don’t forget
that the asterisk can be a placeholder for many character split across many words so a
(fictitious) flightplan called: Balcan super-duper not danish airline would also be
included. However if you had a flightplan with cada in its name (e.g. abracadabra) it
would be included also, as the asterisk can also be a placeholder for nothing.

Beside the asterisk the question-mark (?) is also a valid wildcard, however it is a wildcard
for exactly one character. Entering the filter-text ca?da will not include airlines with
canada in their name as na is 2 characters. Likewise abracadabra will not be included
either as in this case there is no character between ca and da. However if you enter the
filter-text as ca??da then flightplans with canada in their names would be include as na is
eactly 2 characters long. Likewise if you enter the filter-text bal?ic, flightplans with
Baltic in their name would be included, as the question-mark in this case is a placeholde
for the t. The percent-sign (%) can be used in stead of the question-mark, and it functions
in the exact same way (? is common in DOS wildcards, where % is common as a SQL
wildcard). Last but not least the hash-mark (#) is a wildcard for a single character (like ?
and %), however the character have to be a digit (0-9). E.g. searching for aircraft using
the filter-text 7#7 would include 717, 727, 737, 747 … and so on, however if an aircraft
was called 7M7 it would not be included as M is not a digit.

Automatic wildcards and suppression of these
To search for an airline with west in its name you should in theory have to enter the filter-
text as *west*, meaning there can be nothing or something both before- and after
“west”. However to keep the filter as easy to use as possible, I will automatically add a
prefixed (before) and suffixed (after) asterisk wildcard, so when you enter west I
automatically change it into *west* inside the program. However there might be cases
where you want to suppress these prefixed/suffixed wildcards from being added
automatically. One example would be to include all flightplans that begins with west but
exclude those that only have west somewhere else in their name (e.g. include WestJet
but exclude Southwest Airlines). These automatic added wildcards can be suppressed
using double-qoute (“) as the first- and/or last character in the filter-text. In case with
finding all airlines that begin with west you would enter the filter text as “west (in this
case the prefixed asterisk is suppressed – not added – however the suffixed asterisk is still
added automatically).

Entering/separating multiple filter-elements (or’ed)
In the same filter-text you can enter multiple different filter-elements to search for, but
doing so these need to be separated by comma (,). E.g. searching for all flightplans
containing either east, west, north or south in their names you would enter the filter-
text as east,west,north,south. You are allowed to insert spaces before/after the
comma if you think it makes the text more readable, but it is not necessary/required, and
they are simply ignored. As a software developer I would say that these elements are
or’ed, meaning the result will contain all flightplans that contain east or west or north or
south in their name.

In the next section we will look at different filter-types entered into the same filter-text.
Filter sub-elements of the same type can be separated with a slash (/) or the pipe-char
(|), whereas filter-elements of different types have to be separated by comma (,).

Filter-types
In the same filter-text you can enter multiple elements to search for. As stated above if
the elements are of the same type you can (in most cases) separate them with a slash (/)
or a pipe-char (|), but if the elements are of different types they need to be separated by
comma (,). When you not explicitly specify the type, the search filter will have a default
type that it uses. E.g. entering west into a flightplan filter, it will look for flightplans
containing west in their name. When using the an airline/aircraft- filter the default type
will both look in ICAO- and IATA-code, and the name of the airline/aircraft. The default
filter for airports will only look in the ICAO-code of the airport (to be backward
compatible). These are the most commonly elements to search for, hence that is why I
chose them is as default, so you don’t need to specify what you want to search for (again:
no need to complicate things when not needed)

However if you want to search for other properties you will have to enter the name of
type followed by an equality-operator (in most cases =) and then the value you want to
search for. E.g. to find all summer flightplans you can enter the filter-text
season=summer. If you at the same time want to limit the result to only include flightplans
for a specific year you have to enter this as an additional element: season=summer,
year=2018. As you see here we use comma to separate different types.

If you want to search for all flightplans made by the same author your can enter the filter-
text as author=johan in order to find all flightplans made by Johan. If you want to find all
flightplans made by either Johan or Kai you can enter the filter-text as author=johan,
author=kai. However since these are both the same type (author) you can enter it in a
way where you only specify the type a single time, but then add more values separated by
slash (/), e.g. author=johan/kai. These are still regarded as two sub-elements of the
same type (using the same equality-operator). Since they are the same type the result is
or’ed as mentioned previously, so the result will include flightplans with johan or kai in
the names of the authors.

If you at the same time want to search using different types (e.g. both default, and
author) you can enter a filtertext of east,west,north,south,author=johan/kai. The
elements of the same type are still or’ed. So whether the name contains east, west,
north or south is not important (as long as it contains one of them), likewise it is not
important if the flightplan is made by johan or kai (as long as it is one of them).
However the 2 different sets of types are and’ed meaning that both type-criteria MUST be
valid. E.g. Johan’s “Danish Air Transport” is not included (as it does not contain “north”,
“east”, “west”, “south” in the name). Likewise “WestJet - Wi19-20” is not include as it is
neither made by Johan or Kai (it is made by Allan Lee).

Forcing sub-elements of same type to be and’ed
As written before elements of the same types are or’ed (one of them must be true),
whereas elements of different types are and’ed (each type MUST have at least one sub-
element that is true). One example of when we would need to force elements of the same
type to be and’ed, could be to include all flightplans that both contains air and cargo in
their names. Simply writing both as separate elements would not work (either entered as
air,cargo or air/cargo), as it would include all flightplans that had either of those
words in their name (e.g. airBaltic that contains air even though it does not contain

cargo). Using a traditional wildcard we could chose to write air*cargo. This will include
flightplans like Polar Air Cargo, but it would not include Cargoair. We can however
fulfill this task by entering air*cargo,cargo*air. Since there are only 2 words, we are
left with these 2 ways of combining them, but what if there had been 3 words we would
want to search for, then we have to dig out our old math-knowledge of calculating the
number of combinations.

We can however force all elements of a specific type to be and’ed in stead of being or’ed
as they are by default. This is however not possible using the default filter type, so we
have to use a named filter-type. The flightplan filter contains a name filter for the
flightplan name simply called name so finding all flightplans with either “air” or “cargo” in
its name can be written as: name=air/cargo. This does not solve our problem as we still
include all fightplans with either air or cargo in their names, and we only want to include
those that have both. To do this we have to tell the program that all elements of the
name-type must be and’ed, and to do this you have to use the ampersand (&). This
ampersand MUST be entered between the name of the type and the equality-sign (in this
case =), hence the filter will be entered as: name&=air/cargo.

As soon as the ampersand is in use, ALL elements of that type are and’ed. So if you enter
a filter-text as name&=air,year=19,name=cargo, the result will only contain flightplans
that both have air and cargo in their names (and are from year 2019).

Equality operators
When you use the default filter-type (when you don’t explicitly write the name of the filter-
type) the eqaulity operator defaults to equal (=). E.g. if you simply enter west as a filter
for flightplans, the included flightplans will be those with west in the name (hence the
filter “have to be true”). However if you do specify the name of the filter you have the
option of specifying another equality operator. So for instance you could set up a filter to
exclude all flightplans with west in the name by writing name!=west, where != is the way
you write not equal. As an alternative (as used in Pascal/Delphi) you can write <> in stead
of != (it is just another supported way of writing not equal).

But you have to be careful if you want multiple sub-elements to be not equal. E.g. if you
want all flightplans that don’t have east nor west in their name, that you could be
forgiven for thinking that it could be written as name!=east/west. However you have to
remember that multiple sub-elements of the same type (in this case “name”) are by
default or’ed, meaning as long as one element is true, the other don’t have to be. So in
case with a flightplan called WestJet the first sub-element is true (name!=east) as this
flightplan don’t have east in the name. So in this case we have to use the ampersand to
ensure all elements have to be true, so the filter should be written as name&!=east/west.
Remember the ampersand MUST be written before the equality operator and not equal
can be written as both != or <>, however =! will not be allowed (nor will ><) and will
change the text color to red to indicate an error.

All filter-types support both = and != (inclusive <>) however only numeric sub-elements
supports: < (less than), <= (less than or equal), > (greater than), and >= (greater than or
equal). When using an aircraft filter you are able to specify the passenger count of the
aircraft you want to include. E.g. you might write the filter-text as passengercount>=20
to only include aircraft with 20 or more passengers (=> or =< are not valid and will turn

the filter-text red to indicate an error).

But what if you want to both set a low- and a high limit (e.g. to include all aircraft with 20
to 50 passengers – both included). Again you have to use the ampersand. Writing the
filter as passengercount>=20,passengercount<=50 will not work, as the sub-elements
are or’ed and ALL aircraft will either have a passengercount that is 20 or greater, or 50
and less (hence ALL aircraft will be included). Many of the filter-types are overloaded so
there are often multiple ways to write the same filter-type, so passengercount can also
be written simply as pax. So the correct way to write this filter is: pax&>=20,pax<=50. As
stated before as soon as the filter type has been written once with the ampersand, ALL
instances of that filter-type will be and’ed so the same filter can also be written as
pax>=20, pax&<=50.

The equality operator have to come after the name of the filter (an ampersand between
them are allowed), so it is not allowed to write the filter as pax&>=20/<=50. It is perfectly
allowed to write pax&>=20/50, but it makes no sense to do so. Since we will only include
aircraft fulfilling both sub-elements hence only aircraft with 50 or more passengers will be
included. Also it is allowed to write the filter as pax&=20/50 however this makes even less
sense. In this case you specify you only want to include all aircraft that both have a
passenger count of 20 and a passenger count of 50. However as you use the ampersand
both have to be true at the same time, and its impossible for the same aircraft-type to
both have a passenger count of 20 and of 50, hence NO aircraft will be included. The filter
is not invalid and as such will not turn the text red. However it would be just as stupid as
trying to list all aircraft suitable for more than 10000 passengers. Had you in stead
entered the filter without ampersand (e.g. pax=20/50) the elements are or’ed meaning
the result would include all aircraft that either had an exact passenger count of 20 or 50.

Don’t complicate things
Always choose the most lazy approach to write the filter. In an aircraft filter you can
specify the engine-count (number of engines) using the short-hand ec. So to find all
aircraft with 1 or 2 engines you can write it is either: ec=1/2 or ec<3. In theory these
filters are not the same as the last would also include aircraft with 0 engines. However at
least as of now there are not such aircraft, hence the result-sets are the same. Likewise
don’t over complicate the filter. If you only want to select a few specific 737 types like the
max’es you could write the filter as name&=737/max in order to only show those aircraft
that both contain 737 and max in their name (both). But being lazy I would simply write
max as I know there are fewer aircraft with max in their name as there are with 737.
Likewise to only select the 747 freighters I would probably only search for 747. This will
show all 747’s (including the pax and mixed), but it is still only a few aircraft that will be
shown, so I can quickly put a check-mark next to the ones I need (it is still a lot quicker
than writing a complex filter).

Multiple ways to write the same filter-type
As stated previously the same filter-text can normally be written in multiple ways, so I
suggest you memorize the short-hand versions of each type as they are faster to type.
However the longer (full) versions of the type names might be easier to remember. Since
there are many versions of each filter-type that you are allowed to enter, you are in luck
as long as you remember just one of these. E.g. the passenger count we looked at before
can both be written as “passengercount”, “paxcount”, “passengers”, “passenger”, “pax” or

simply as “pc”.

What I have written here on the first pages are generic for all filters and describes the
general behavior of all the filters. In the next pages I will instead describe each different
filter, listing the various filter-types that can be used for each filter.

Flightplan filter

The default filter (used when not specifying a filter-type name) for flightplan filters is the
name of the flightplan. Remember the (default) equality-operator for the default type is
always = (equal), and all elements are or’ed, as you are not able to specify neither an
equality operator nor an ampersand.

Name (can contain wildcards)
You are able to explicitly specifying the name filter-type (e.g. name=west). By doing so
you are able to use the not-equal equality-operator and the ampersand if you need to.
Alternatives: name|nm|n
Example: name=west
Example: n&=air/cargo

Author (can contain wildcards)
By using the author filter-type you are able to specify a specific author, in order to only list
flightplans made by that author.
Alternative: author|athr|ath|a
Example: author=johan/kai

Provider (can contain wildcards)
Johan Clausen both releases flightplans using AIG as the provider or using this own
provider name JCAI. If you simply use the author type you can find all flightplans made by
Johan, but if you only want to see those he released with JCAI as the provider you have to
use the provider type.
Alternative: provider|prvdr|prvd|prv|pvd|p
Example: provider=jcai

Year (numeric value, can’t contain wildcards)
Using the year filter-type you are able to specify which year(s) to include. In this aspect it
is important to remember that winter flightplans are normally containing 2 different years.
E.g. “Wi19-20” meaning the winter of (late) 2019 and (early) 2020. However it is the first
year that is, used so in this case you would have to use year=2019 (combined with
season=winter if you only want to exclude summer 2019). The year can be written either
as a four digit number (e.g. 2019) or a two digit number (e.g. 19). When entered with 2
digits 20 will be prefixed (e.g. turning 19 into 2019). This value is only prefixed behind the
scene, hence the entered filter-text will not change. Since Year is a numeric value you are
also able to use the equality-operators <, <=, >, and >=.
Alternative: year|yr|y
Example: year=2019,season=winter
Example: year<=2019
Example: yr&>=2016,yr<=2018
Example: y=16/17/18

Season (fixed values – without wildcards)
You are not able to use a wildcard with this filter-type, but in stead you have to use either
summer or winter. Both are however available in shorter alternative versions. You will
most likely always use this filter-type together with the year-type.

Alternative: season|ssn|sn|s
Alternative(summer): summer|smr|su|s|1
Alternative(winter): winter|wntr|wi|w|2
Example: year=2019,season=winter
Example: y=19,s=wi

Yearseason (numeric value, can’t contain wildcards)
Yearseason is a combination of year and season into the same filter. Not only can it be
used as short-hand of filtering on both year and season, but it also allows you to perform
operations that are not possible with the two separate filter-types. With year and season
you can not setup a combined filter to include all flights (from all years) before winter
2019. When using the Yearseason filter-type you have to use a 3 or 5 digit number, where
the first 2 or 4 are the year, and the last is the season (1=summer,2=winter). However
you are also allowed to enter the seasons as S (Summer) or W (winter). In case you do so,
these are simply converted into the digits 1 or 2 in the software (however not displayed as
such).
Alternative: yearseason|yrssn|yrsn|yrs|yssn|ysn|ys
Example: yearseason<2019W
Example: ys&>=20151,ys<20182

Folder (can contain wildcards)
If you go into the “Enable/Disable flightplans” form you can setup various sub-folders at
move your flightplans into these folders. Using the folder filter-type you can set up a filter
to only include flightplans from certain folders (these still needs to be set as active in
“Enable/Disable flightplans”. I have all my BizJet flightplans in a sub-folder called BizJet
which I can include or exclude using this filter. The root-folder is called ROOT (but not case
sensitive).
Alternative: folder|fldr|fld|fdr|f
Example: folder=bizjet
Example: folder!=ROOT

Airline filter

The default filter (used when not specifying a filter-type name) for airline filters is a
combination of ICAO-/IATA-code and the name of the airline (as long as either of the
three contains the text you entered, that airline will be included). Remember the (default)
equality-operator for the default type is always = (equal), and all elements are or’ed, as
you are not able to specify neither an equality operator nor an ampersand.

Name (can contain wildcards)
You are able to explicitly specifying the name filter-type (e.g. name=west). By doing so
you are able to use the not-equal equality-operator and the ampersand if you need to.
Alternatives: name|nm|n
Example: name=west
Example: n&=air/cargo

ICAO (can contain wildcards)
The icao-type lets you search for airlines with a specific ICAO-code.
Alternatives: icao|ic
Example: icao=sas
Example: ic=klm/afr/dhl

IATA (can contain wildcards)
The iata-type lets you search for airlines with a specific IATA-code.
Alternatives: iata|ia
Example: iata=sk
Example: ia=kl/af/lh

Country (can contain wildcards)
Using the country-type you are able to search for airlines registered in a certain country.
However an airline can only be registered in a single country. E.g. SAS (Scandinavian
Airlines) is considered both a Danish-, Norwegian- and Swedish airline, however only
registered as Swedish. Searching for airlines registered in certain countries, you have to
use the 3-letter ISO country codes (e.g. DNK for Denmark, NOR for Norway and SWE for
Sweden). If you drop-down the country combo-box in the right side of the leg-search form
you can see the ISO3 code for each country in use.
Alternatives: country|ctry|ctr|ct
Example: country=usa
Example: ct=dnk/nor/swe/fin/isl

Region (can contain wildcards)
Using the region-type you are able to search for airlines located in certain regions (based
on the country in where they are registered). Searching for airlines located in certain
regions, you have to use the 3-letter region codes (e.g. EUR for Europe). If you drop-down
the region combo-box you can see the 3-letter code for each region.
Alternatives: region|regn|reg|rgn|rg
Example: region=eur
Example: rg=asi/oce

Subregion (can contain wildcards)
Using the subregion-type you are able to search for airlines located in certain subregions
(based on the country in where they are registered). Searching for airlines located in
certain subregions, you have to use the 3-letter subregion codes (e.g. EUR for Europe). If
you drop-down the subregion combo-box you can see the 3-letter code for each
subregion.
Alternatives: subregion|subreg|subrg|sbrg|sreg|srg|sr
Example: subregion=naf
Example: sr=sas/sea/eas
Example: sr&!=pol/mel/mic

Callsign (can contain wildcards)
The callsign-type lets you search for airlines with a specific callsign. You can see the
callsign in the airline browser/search form. However if you have to look up an aircraft to
find its callsign, it kind of defeats the purpose. In that case either filter by ICAO, IATA or
name in stead.
Alternatives: calsign|call|cs
Example: callsign=scandinavian
Example: cs=hansaline/brickyard

Aircraft filter

The default filter (used when not specifying a filter-type name) for aircraft filters is a
combination of ICAO-/IATA-code and the name of the aircraft (as long as either of the
three contains the text you entered, that aircraft will be included). Remember the
(default) equality-operator for the default type is always = (equal), and all elements are
or’ed, as you are not able to specify neither an equality operator nor an ampersand.

Name (can contain wildcards)
You are able to explicitly specifying the name filter-type (e.g. name=boeing). By doing so
you are able to use the not-equal equality-operator and the ampersand if you need to.
Alternatives: name|nm|n
Example: name=boeing
Example: n&=airbus/320

ICAO (can contain wildcards)
The icao-type lets you search for aircraft with a specific ICAO-code.
Alternatives: icao|ic
Example: icao=B772
Example: ic=A332/A333

IATA (can contain wildcards)
The iata-type lets you search for aircraft with a specific IATA-code.
Alternatives: iata|ia
Example: iata=DH4
Example: ia=74Y/74N

Enginetype (fixed values – without wildcards)
For each aircraft I have specified its engine type as either jet, turboprop or prop. Using
the enginetype filter-type you are able to filter to only show aircraft with the filtered
enginetype.
Alternatives: enginetype|engtyp|engtp|et
Alternatives(jet): jet|jt|j
Alternatives(turboprop): turboprop|turbo|tp
Alternatives(prop): propeller|prop|p
Example: enginetype=jet
Example: et!=prop

Enginecount (numeric value, can’t contain wildcards)
Beside filtering on the type of engines you can also filter on the number of engines by
using the enginecount filter-type.
Alternatives: enginecount|engcount|engcnt|ec
Example: enginecount=2
Example: ec>=3

Usage (fixed values – without wildcards)
Using the usage filter-type you can filter on how the aircraft are used (e.g. passenger,
freight, or various types of military purpose). This usage is not based on the flightplans,
as the flightplans don’t contain such info. In stead its based on the aircraft types (e.g. an
Airbus 320 is obviously a commercial passenger aircraft). Flightplan visualiser don’t come
bundled with any military flightplans, so you have to import these yourself. Beside
pax/cargo, there is also a mixed/combi usage (e.g. the 747 comes in a mixed/combi
version). When an aircraft comes in a pax- and a freight-version these are normally added
as two separate aircraft with their unique iata/icao-codes (e.g. “77L, Boeing 777-200LR
Pax” and “77X, Boeing 777 Freighter”). However there are aircraft-types used both for
passenger and freight, where there are no two sets of unique iata/icao-codes. In these
cases the datafile will only contain a single aircraft and the usage of this aircraft is
specified as paxfreight. Also there are three major values called civilian (all non-
military usage both pax and freight), commercial (all civilian except GA) and military (all
non-civilian usage both pax and freight).
Alternatives: usage|use|us|u
Alternatives(passenger): passengers|passenger|pax
Alternatives(freight): freighter|freight|cargo
Alternatives(paxfreight): paxfreighter|paxfreight|freighterpax|freightpax|
paxcargo|cargopax
Alternatives(combi): combi|combo|mixed
Alternatives(ga): generalaviation|general|ga
Alternatives(utility): utility|util|ut
Alternatives(civilian): civilian|civil|civ
Alternatives(commercial): commercial|com
Alternatives(military): military|mil
Alternatives(milcombat): milcombat|combat
Alternatives(milfreight): milfreighter|milfreight|milcargo
Alternatives(milutility): milutility|milutil|milut
Example: usage=freight/paxfreight/combi
Example: usage=cargo/milcargo
Example: usage=passenger,enginecount=2,enginetype=turboprop

Passengercount (numeric value, can’t contain wildcards)
For each passenger aircraft-type I have registered a maximum passengercount (this value
is 0 for freight aircraft). When an airline purchase an aircraft they can choose between
different seating-configurations, so the value I have chosen might vary from the
passengercount from a specific configuration of set aircraft-type (e.g. it might differ from
a 3rd party aircraft model you are using in your sim).
Alternatives: passengercount|passengers|passenger|paxcount|pax|pc
Example: passengercount>300
Example: pax&>=20,pax<50

Favorite (fixed values – without wildcards)
Using simple fixed values you are able to filter aircraft marked as favorites.
Alternatives: favorites|favorite|fav|fv
Alternatives(true): true|yes|t|y
Alternatives(false): false|no|f|n

Example: favorites=true
Example: fav=yes,usage=cargo

Typerate (fixed values – without wildcards)
I have categorized the aircraft into multiple typerate categories where the aircraft have
been categorized according to enginetype and size (based on EOW/MTOW). Please remark
the “jet” categories contains a “minor” classification that the “prop” and “turboprop”
categories does not (simply to have an extra category in this large segment of aircraft).
Alternatives: typerating|typerate|type|rate|tr
Alternatives(single engine prop): PropSingle
Alternatives(small multi engine prop): PropMultiSmall
Alternatives(medium multi engine prop): PropMultiMedium
Alternatives(large multi engine prop): PropMultiLarge
Alternatives(huge multi engine prop): PropMultiHuge
Alternatives(single engine turboprop): TurbopropSingle|TurboSingle
Alternatives(small multi engine turboprop): TurbopropMultiSmall|TurboMultiSmall
Alternatives(medium multi engine turboprop): TurbopropMultiMedium|
TurboMultiMedium
Alternatives(large multi engine turboprop): TurbopropMultiLarge|TurboMultiLarge
Alternatives(huge multi engine turboprop): TurbopropMultiHuge|TurboMultiHugh
Alternatives(business jet): BusinessJet|BizzJet|BizJet
Alternatives(small jet): JetSmall
Alternatives(minor jet): JetMinor
Alternatives(medium jet): JetMedium
Alternatives(huge jet): JetHuge
Example: typerate=bizzjet|jetsmall
Example: tr=PropSingle|TurboSingle

Size (fixed values – without wildcards)
While the (long) names used in the typerate filter-type can be hard to remember they do
offer better flexibility selecting various sizes of aircraft across multiple engine-types.
However when you don’t need this flexibillity, you can simply use the Size filter-type. But
for the best result it should be used together with the enginetype, as the sizes are not
comparable between between different engine-types:
Alternatives: size|sz
Alternatives(single engine): single|sgl
Alternatives(small multi engine): small|sml
Alternatives(minor multi engine – only jets): minor|min|mnr
Alternatives(medium multi engine): medium|med
Alternatives(large multi engine): large|lrg|lar
Alternatives(huge multi engine): huge|hge|hug|hg
Examples: enginetype=jet,size=huge
Examples: enginetype=turboprop,size=small/medium

Empty operating weight (numeric value, can’t contain wildcards)
In case you disagree with my size categorization (using the typerate- or size types) you
can filter by emptyoperatingweight (or simply EOW). This is a numeric value hence you
can use all of the supported equality-operators, and the weight is specified in lbs.

Alternatives: emptyoperationweight|emptyweight|eow|ew
Example: eow<=10000
Example: eow&>=50000,eow<70000

Maximum take-off weight (numeric value, can’t contain wildcards)
Like with EOW you can use maximumtakeoffweight to do your own size categorization
using the MTOW filter-type. This is a numeric value hence you can use all of the supported
equality-operators, and the weight is specified in lbs.
Alternatives: maximumtakeoffweight|maxtakeoffweight|takeoffweight|mtow|tow|
tw
Example: mtow&>=300000,mtow<400000

Range (numeric value, can’t contain wildcards)
You can filter by the range (the distance between airports that can be served by the
filtered aircraft). In real-life the range (distance) an aircraft can cover is based very much
on the payload (how many passengers/how much cargo) it carries. This is however not
possible to take that into consideration here. So the range for each aircraft is a static
value, and as such it might differ from other data you might have at hand (e.g.
documentation for a 3rd party model).
Alternatives: range|rng|rge
Example: range<1000
Example: rng>=5000
Example: rng&>=1000,rng<3000

Airport filter
The default filter (used when not specifying a filter-type name) for airport filters is the
ICAO-code of the airport (to keep working as the old text-entry prior to version 1.15).
Remember the (default) equality-operator for the default type is always = (equal), and all
elements are or’ed, as you are not able to specify neither an equality operator nor an
ampersand.

ICAO (can contain wildcards)
The icao-type lets you search for airports with a specific ICAO-code. By doing so you are
able to use the not-equal equality-operator and the ampersand if you need to.
Alternatives: icao|ic
Example: icao=kbos
Example: ic=ekch/engm/essa
Example: ic&!=ekch/ekbi/ekyt,ic=ek??

IATA (can contain wildcards)
The iata-type lets you search for airports with a specific IATA-code.
Alternatives: iata|ia
Example: iata=bos
Example: ia=chp/bll/aal

Name (can contain wildcards)
You are able to explicitly specifying the name filter-type containing the name of the airport
(e.g. name=kastrup). The name is extracted from the scenery by (Pete Dowson’s)
MakeRunways, so the name might have changed since the scenery was released/updated.
(remember you should always run MakeRunways and copy the files mentioned in the
manual, after having installed/updated your scenery, to have the latest data being
available for FV).
Alternatives: name|nm|n
Example: name=kastrup/gardemoen/arlanda
Example: n&=stevens/intl

City (can contain wildcards)
Using the city-type you are able to search for airports located in certain cities. In case you
are filtering by a city-name existing in multiple countries, you might need to combine the
city-filter with the country-filter.
Alternatives: city
Example: city=boston
Example: city=copenhagen/oslo/stockholm

State (can contain wildcards)
Using the state-type you are able to search for airports located in certain states. If you are
in doubt as how the states are named, you can hover the mouse over the airport markers
on the main map, and read the name of the state in the tool-tip window (the name of the
state – if applicable – is listed in parentheses after the country-name). You might need to
enable some of the marker check-boxes in the lower/left-corner of the main-form in order
to see the markers you might be looking for.

Alternatives: state|st
Example: state=illinois
Example: st=new south wales/queensland

Country (can contain wildcards)
Using the country-type you are able to search for airports located in certain countries. If
you don’t need to specify multiple countries or other filter-types, it will be quicker to
simply use the country combo-box to pick that country. Searching for airports located in
certain countries, you have to use the 3-letter ISO country codes (e.g. DNK for Denmark,
NOR for Norway and SWE for Sweden). If you drop-down the country combo-box you can
see the ISO3 code for each country in use.
Alternatives: country|ctry|ctr|ct
Example: country=usa
Example: ct=dnk/nor/swe/fin/isl

Region (can contain wildcards)
Using the region-type you are able to search for airports located in certain regions. If you
don’t need to specify multiple regions or other filter-types, it will be quicker to simply use
the region combo-box to pick that region. Searching for airports located in certain regions,
you have to use the 3-letter region codes (e.g. EUR for Europe). If you drop-down the
region combo-box you can see the 3-letter code for each region.
Alternatives: region|regn|reg|rgn|rg
Example: region=eur
Example: rg=asi/oce

Subregion (can contain wildcards)
Using the subregion-type you are able to search for airports located in certain subregions.
If you don’t need to specify multiple subregions or other filter-types, it will be quicker to
simply use the subregion combo-box to pick that region. Searching for airports located in
certain subregions, you have to use the 3-letter subregion codes (e.g. EUR for Europe). If
you drop-down the subregion combo-box you can see the 3-letter code for each
subregion.
Alternatives: subregion|subreg|subrg|sbrg|sreg|srg|sr
Example: subregion=naf
Example: sr=sas/sea/eas
Example: sr&!=pol/mel/mic

